167 research outputs found

    Canonical quantization of macroscopic electrodynamics in a linear, inhomogeneous magneto-electric medium

    Full text link
    We present a canonical quantization of macroscopic electrodynamics. The results apply to inhomogeneous media with a broad class of linear magneto-electric responses which are consistent with the Kramers-Kronig and Onsager relations. Through its ability to accommodate strong dispersion and loss, our theory provides a rigorous foundation for the study of quantum optical processes in structures incorporating metamaterials, provided these may be modeled as magneto-electric media. Previous canonical treatments of dielectric and magneto-dielectric media have expressed the electromagnetic field operators in either a Green function or mode expansion representation. Here we present our results in the mode expansion picture with a view to applications in guided wave and cavity quantum optics.Comment: Submitted to Physical Review A 24/07/201

    Slow light with flat or offset band edges in multi-mode fiber with two gratings

    Full text link
    We consider mode coupling in multimode optical fibers using either two Bragg gratings or a Bragg grating and a long-period grating. We show that the magnitude of the band edge curvature can be controlled leading to a flat, quartic band-edge or to two band edges at distinct, nonequivalent kk-values, allowing precise control of slow light propagation.Comment: 6 pages, 3 figure

    Coupled-mode theory for spatial gap solitons in optically-induced lattices

    Full text link
    We develop a coupled-mode theory for spatial gap solitons in the one-dimensional photonic lattices induced by interfering optical beams in a nonlinear photorefractive crystal. We derive a novel system of coupled-mode equations for two counter-propagating probe waves, and find its analytical solutions for stationary gap solitons. We also predict the existence of moving (or tilted) gap solitons and study numerically soliton collisions.Comment: 3 pages, submitted to Optics Letter

    Enhanced soliton transport in quasi-periodic lattices with short-range aperiodicity

    Full text link
    We study linear transmission and nonlinear soliton transport through quasi-periodic structures, which profiles are described by multiple modulation frequencies. We show that resonant scattering at mixed-frequency resonances limits transmission efficiency of localized wave packets, leading to radiation and possible trapping of solitons. We obtain an explicit analytical expression for optimal quasi-periodic lattice profiles, where additional aperiodic modulations suppress mixed-frequency resonances, resulting in dramatic enhancement of soliton mobility. Our results can be applied to the design of photonic waveguide structures, and arrays of magnetic micro-traps for atomic Bose-Einstein condensates.Comment: 4 pages, 4 figure
    • …
    corecore